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Intragenerational Mostly related Intergenerational
equity and fairness to mitigation equity and fairness

Formula for the fair wage A equals the square root of Cookie monster consumes everything he gets immediately
minimum consumption a times value of produced goods p Cookie monster’s pure rate of time preference 100% per second,
on grave stone of Johann Thiinen (1783-1850). Source: own! consequently, his savings rate is zero.
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Harmonized
assumptions

Shared
Socioeconomic

Bauer et al. (2023)

Models &
analysis tools
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Abstract

Temperature targets of the Paris Agreement limit global net cumulative emissions to very tight
carbon budgets. The possibility to overshoot the budget and offset near-term excess emissions by
net-negative emissions is considered economically attractive as it eases near-term mitigation
pressure. While potential side effects of carbon removal deployment are discussed extensively, the
additional climate risks and the impacts and damages have attracted less attention. We link six
models for an integrative analysis of the climatic, environmental and socio-economic consequences
of temporarily overshooting a carbon budget consistent with the 1.5 °C temperature target along
the cause-effect chain from emissions and carbon removals to climate risks and impact. Global
climatic indicators such as CO,-concentration and mean temperature closely follow the carbon
budget overshoot with mid-century peaks of 50 ppmv and 0.35 °C, respectively. Our findings
highlight that investigating overshoot scenarios requires temporally and spatially differentiated

analysis of climate, environmental and socioeconomic systems. We find persistent and spatially

heterogeneous differences in the distribution of carbon across various pools, ocean heat content,
sea-level rise as well as economic damages. Moreover, we find that key impacts, including
degradation of marine ecosystem, heat wave exposure and economic damages, are more severe in
equatorial areas than in higher latitudes, although absolute temperature changes being stronger in
higher latitudes. The detrimental effects of a 1.5 °C warming and the additional effects due to
overshoots are strongest in non-OECD countries (Organization for Economic Cooperation and
Development). Constraining the overshoot inflates CO, prices, thus shifting carbon removal
towards early afforestation while reducing the total camulative deployment only slightly, while
mitigation costs increase sharply in developing countries. Thus, scenarios with carbon budget
overshoots can reverse global mean temperature increase but imply more persistent and

geographically heterogeneous impacts. Overall, the decision about overshooting implies more
severe trade-offs between mitigation and impacts in developing countries




Mitigation under a 600 GtCO, C-budget (2010-2100)

Global net CO, emissions GDP losses (mitigation only)
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Climate System and key components
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Global Air Temperature Ocean heat content eridional overturning
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no overshoot

overshoot

* Likelyhoods of extreme events
increases and can be associated to

* Age cohorts
* Countries (groups of countries)

* Higher lifetime exposure most
substantial regarding heatwaves

* Low income, high temperature
countries:

* most affected w/o overshoot
* largest increase w/ overshoot
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The intertemporal dimension
of climate change



* How to aggregate damages and utilities over time?
* Key issue in (environmental) economics
* Climate change mitigation is a long-term challenge

* General economics argument: present consumption values more
than future consumption

e Empirical research found very different results

* In environmental and climate economics exponential discounting is common
* This means that the annual discount rate is constant p

* Discount Factor DF=1 /(1 + p)t



PRESENT VALUE OF A CASH FLOW OF $1000
RECEIVED AFTER T YEARS

t Value ($) of $1000 at a discount rate of Certainty
Equally likely ~ equivalent
1% 4% % 3, h 4 o /0" (%)
expected value
1 990.05 960.79 932.39 961.22 3.94
10 904.84 670.32 496.59 700.71 3.13
50 606.53 135.34 30.20 318.36 1.28
100 367.88 18.32 0.91 184.40 1.02
150 223.13 2.48 0.03 111.58 1.0
200 135.34 0.34 0.00 67.67 1.01
300 49.79 0.01 0.00 24.89 1.01
400 18.32 0.00 0.00 9.16 1.01

Arrow et al. (2014),
DOI 10.1126/science.1235665



 Why is it so important?

* The social cost of carbon SCC are the net present value
of all damages caused by a ton of carbon emitted:

T
n
scC = zz Dp(t, i) (1 + p)~t
p— i=1

* The discount rate is crucial for this cumulative value



The economic back-bone of DICE (and REMIND) is the Ramsey model of optimal growth
Ramsey asked: how much a society should save?

Intertemporal trade-off of consumption today and tomorrow

Savings used for investment to increase capital stock K to produce Y

For the general capital accumulation problem the Keynes-Ramsey rule is derived for
steady-state growth

Wellfare function: W=3%,.U()*efdt

: oY
Long-term interest rate r = K d=p+a+n

The net interest rate r is the marginal product of capital corrected by capital depreciation o

Interest rate ris determined by the pure rate of time preference p,
technological progress a and population growth n

Most debate is about p (e.g. Stern vs. Nordhaus)



Cost

Intergenerational equity — SCC derived from a model

Minimal total cost

Emissions reduction

The optimum requires that marginal
damage and marginal mitigation cost
equalize

Setting an environmental target leads to
cost-effectiveness analysis

CBA and CEA are strongly disputed

Implementation in the DICE model

O(t) = 1B A(1)- K (1) -

L(H)"7



Temperature Increase from 1300 (oC)

Global mean temperature (°C)

Intergenerational equity — Social Cost of Carbon
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Results from the US EPA study on SCC [carbon pollution]

CARBON’S COSTLY LEGACY

Economic models of climate change project that resulting damage worldwide (A) will increase with future emissions and may cost several per cent of global gross
domestic product (GDP) with the warming expected by 2100. Uncertainties in future socio-economics, emission rates and climate impacts result in a range of estimates
of the sacial cost of carbon, which is also affected by the choice of 'discount rate’ used to convert future harms into today's money (B).
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Estimating the impacts
of climate change



Process based modeling approach

 Climate change leads to impacts that are valued
* E.g. increasing temperature lead to yield losses in agricultural production (ton pre ha)
* Impacts are monetized
* Valuation of a bundle of changes; e.g. lower yield is multiplied with price
* Include impacts into a model to derive the economy wide effects after price
changes and market based adaptation (trade); impact on GDP

Econometric approach

 Take data on weather and economic activity (i.e. GDP)

* What are the significant effects of weather anomalies on GDP?

* E.g. if warmer years have negative impacts on GDP, then increases in average
temperature will have negative effects also on average

* Solomon Hsiang (2016): 10.1146/annurev-resource-100815-095343



Probability of Occurrence

Probability of Occurrence

Probability of Occurrence
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Shifted Mean

a)

less

cold

less
extreme cold
weather

weather

|"\
.

b)

more
extreme cold
weather

more
extreme hot
weather

extreme cold
weather

C
’ — Without climate change
== With dimate change
near constant 1) more
cold hot
weather weather
near constant more

Mean:

"hot ' extreme hot

without and with weather change

* Regular shift of probability density function

* High-end event probability increases

* Low-end event probability decreases

* Variability increases, predictability decreases
* High-end event probability increases

* Low-end event probability increases

* Both tails become fatter

* Shape of the function changes

* High-end event probabiility increases

* The tail becomes fatter

IPCC, SREX SPM
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Health and heat stress — The 2003 European heat wave

a

o

g B

2

£ CTRL

N 1961-1990

b

)

=

[

g

e ‘f Py SCEN
| _— | | ‘\-,..!! 2071-2100

12 14 16 18 20 22 24 26 28
Temperature (°C)

.
THIS{IS{THE| COI.DEST SUMMER 1]
Temperature change (°C) Change in temperature variability (96) TH E R EST 0': YO UR I_IFE

0 1 2 3 4 5§ =20 0 20 40 60 80 100

Source: Schar et al., Nature, 2004




Climate forcers from IAMs
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Climate response from ESMs
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Process based impacts

Threshold values for weather extremes
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e Estimated parameters do not
explain the underlying cause-
effect chain

* The 10 year lag structure
suggests that
* Direct destruction is miniscule
* Knock-on effects dominate

* Working hypothesis:
macroeconomic effects during
recovery and rebuild need be
taken into account



Climate econometric approach

Marginal impacts of temperature change on income growth
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Billion PHL Pesos

Well-being losses (1000 WBLU)

Damage to productive assets

e — * Households with assets and income, decision making in a equilibrium
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Sauer et al. (2025)
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Modeling of damages in
Integrated Assessment Models



* Most models assume climate change reduces GDP directly
* This assumption is not necessarily given
* CES production function in capital and labour

- c1l/6
Y = ap[ak” + (1 — a)(x-L,)°]"

* A given reduction in GDP can be caused by
* Reduction of total factor productivity a
e Destruction of capital K
* Reduction of labour supply L
* Reduction of labour efficiency ¥

 Question does it make a difference how the same GDP chock is modeled?



Modeling damages and persistency of GDP effects
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Fig.2 GDP change (panel a), the GDP per capita growth rate after the shock (panel b) and the savings rate
S (panel ¢) in a comparative shock test for different damage channels (colors). For productivity y there are
two cases: permanent and dissipative damage. (Color figure online)
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The shape of GDP change and the
persistency depend on modeling of
shock

Via the macroeconomic model
there is a interrelationship with the
savings rate

Flexibility of saving can help to
buffer a GDP shock
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* Modeling of damage function
strongly affects model results

* Global mean temperature GMT
with optimal policy varies between
near baseline and slightly above
1.5°C

* SCC along Baseline path vary more
strongly than the optimal



Distinction between inter and intragenerational equity/fairness is a tricky starting point
Intragenerational equity is mostly discussed regarding mitigation
Impacts have distributional implications and will so in the future

Process based and econometric approaches are very different and can be extended for
distributional implications

Both approaches should complement each other

Big issue is data availability and the merging of different data sets






Table 1
Extreme Event Definitions Used in This Study

Definition of land area exposed

Definition of population exposed

Event category Event type
River Confined

flood (by topography)
Tropical Confined

cyclone (to storm track)

Crop Confined

failure (to agricultural land)
wildfire Confined

(to vegetated land)
Drought Extensive
(can oceur everywhere)

Heatwave Extensive
(can occur everywhere)

Flooding is assumed to occur whenever daily
discharge (0.5° resolution) exceeds the
preindustrial 100-year return level; to derive

the associated land area exposed per grid cell,
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* Persistent effects?
* Global aggregates of CO, concentration and GMT are fast variables
* Sub-systems in the climate are more inert and react on longer time scales
* Socioeconomic systems also react with inertia

* Geographical differences?
* Mitigation
* Overshoot reduces mitigation burden particularly in low-income, high temperature countries

* Impacts and damages
* Polar amplification is at work and shows persistence
* |ce-sheet melting mostly dependent on long-term temperature change, overshoot secondary
* However, impacts are not only a matter of differences, but todays temperature levels

* Trade-offs are strong in low-income, high temperature countries
* High dependence on energy and food
* High exposure and vulnerability to increasing temperatures

* Research challenges
* Fully integrating mitigation and impacts/damages in overshoot scenarios
* Uncertainty analysis across different models
* Improved interfacing between models



Overview of Work Package

» Task 1.1 Geopolitical risks of transition pathways
» Conceptual, connect political science and modeling
» Match risk categories with model variables and scenario assumptions

» Task 1.2 Advance Modeling

» Capital (cost of financing, capital market fragmentation
» public finance (pressure on public budgets from many sides)
» Trade (energy security)

» Task 1.3 Geopolitical risks due to orderly and disorderly transitions

» What are geopolitical risks implied by different transformation pathways?
» What are risks from geopolitical developments for transitions?
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ScenarioMIP for CMIP7: Improved modelling and integration

Emission-driven mode for CO,

Emissions projections:

= CO, emissions

* Non-CO, concentrations
® Land use patterns

System carbon cycle uncertainty:
Models = Temperature
(ESMs) = Precipitation

IAM-IAV interface

Integrated Impacts,
Adaptation,

Assessment
LG =  Socioeconomic projections (GDP, Pop) Vum(f;?lt;'hty

(1AMs) = Additional direct human forcers
(e.g. nitrogen fertilization, water use)
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The Potsdam Integrated Assessment Modeling framework (PIAM)
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The REMIND-MAGgPIE integrated assessment modeling framework
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The REMIND-MAGgPIE integrated assessment modeling framework
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Scenario analysis

Current policy scenario

Orderly/disorderly transition scenarios: e.g.
delayed action, policy/technology constraints

Other constraints, e.g. energy security

Outcomes in terms of costs (GDP/consumption
change), emissions, ...
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Maringal cost of CO2 abatement [US$(2017)/tCO2
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Scenario analysis: climate policy
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Scenario analysis: energy security
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Indian energy imports under Current Policy scenario
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What are realistic short term
import developments?

What are strategic planning targets?

What is the project-pipeline for
infrastructure development?

Indian energy security policies ?
What are potential source countries?

Are supplies subject to physical
climate risks?
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Income development: India converges, but still a long way to go
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How much will economic growth contribute
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Income development: India converges, but still a long way to go

* Purchasing power parity measures activity,

Indian income projection in USD(MER)/capita .
not money units

* Income reaches China’s today levels ~2045
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3000 -
 What are Indian Projections?
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Population [million person]

Population: Sharp population peak ahead
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Expected population peak ~2055

Todays population is young and life
expectancy increases

Demographic transition is accelerated
Workforce maximum is reached later

Population peak will be reached at lower
per-capita incomes (in MER-Dollars)

What are Indian Projections?
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Cost of capital are heterogenous and affect energy transition and trade
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Integration of physical and transition risks (Task 2.1)
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Focus on finance, capital, trade

Physical and transition impacts
of climate change

Depletion of natural capital and natural services

Fiscal impacts of climate-related disasters

Fiscal consequences of adaptation and mitigation policies

Macroeconomic impacts of climate change

Climate-related risks and financial sector stability

Impacts of climate change on international trade and capital flows

Impacts of climate change on political stability

Sovereign risk

Zenios et al. (2024)

Model some of these
aspects via:

* Risk mark-ups

* Fragmented capital
markets

* Limited capital access

* Trade focus (winners
and losers with respect
to energy markets/
trade/prices)

* Effects on public
budgets

* Multiple pressures (e.g.
demographic transition)
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